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Motivation: Ramsey Numbers

@ Color each edge of the complete graph
Ky red or blue

@ Ramsey’s Theorem: There is always a
blue copy of K, or a red copy of Ks if n
is sufficiently large. The smallest such n
is denoted R(r, s).

@ For example, R(3,3) = 6, so we can
always find a monochromatic triangle in
a Ks.

@ rx(p) is the smallest n such that coloring
the edges of K, with k colors will always
produce a monochromatic copy of Kp.
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@ rx(p) — 1 is the largest n such that K, can be colored so
that every K, has at least 2 distinct colors.
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Generalized Ramsey Numbers

@ rx(p) — 1 is the largest n such that K, can be colored so
that every K, has at least 2 distinct colors.

Definition

For positive integers p and gwithp >3and2 < g < (§), a
(p, q)-coloring is an edge-coloring of K, where every copy of K,
has at least g distinct colors

@ f(n,p,q) is the minimal number of colors of a (p, q)
coloring of Kj

@ Finding an asymptotic estimate for f(n, p, 2) is equivalent
to finding an asymptotic estimate for ri(p) (difficult).
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Example: 1(6,3,2)

@ Since R(3,3) = 6, no coloring of Kz with 2 colors can be a
(3,2)-coloring. So f(6,3,2) > 2.
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Example: 1(6,3,2)

@ Since R(3,3) = 6, no coloring of Kz with 2 colors can be a
(3,2)-coloring. So f(6,3,2) > 2.

@ But there does exist a (3, 2) coloring using 3 colors, so
f(6,3,2) = 3:
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Small Cases

@ A (3,3) coloring is equivalent to a proper edge-coloring
(one in which no two adjacent edges have the same color),
so f(n,3,3) equals nfor nodd and n — 1 for n even.
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best known upper bound is 2°(v°97) (from a coloring
constructed by Mubayi)
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Small Cases

@ A (3,3) coloring is equivalent to a proper edge-coloring
(one in which no two adjacent edges have the same color),
so f(n,3,3) equals nfor nodd and n — 1 for n even.

@ For f(n,4,3), the best known lower bound is Q(log n) and

best known upper bound is 2°(v°97) (from a coloring
constructed by Mubayi)

@ f(n,4,4)is known to be n'/2+°() (also due to Mubayi)

Anti-Ramsey Type Problems



More general bounds

Theorem (Erdés and Gyarfas, 1997)

p—2
For some ¢ depending on p and q, f(n,p,q) < cn(8)-o+

Anti-Ramsey Type Problems



More general bounds

Theorem (Erdds and Gyarfas, 1997)

p—2
For some ¢ depending on p and q, f(n,p,q) < cn(8)-o+

@ Their proof is nonconstructive (uses probabilistic method)

Anti-Ramsey Type Problems



More general bounds

Theorem (Erdds and Gyarfas, 1997)

p—2
For some ¢ depending on p and q, f(n,p,q) < cn(8)-o+

@ Their proof is nonconstructive (uses probabilistic method)
@ They also showed that f(n, p, p) has to be polynomial in n

Anti-Ramsey Type Problems



More general bounds

Theorem (Erdds and Gyarfas, 1997)

p—2
For some ¢ depending on p and q, f(n,p,q) < cn(8)-o+

@ Their proof is nonconstructive (uses probabilistic method)
@ They also showed that f(n, p, p) has to be polynomial in n

@ However, Conlon et al. showed that f(n,p,p— 1) is
subpolynomial in n

Anti-Ramsey Type Problems



More general bounds

Theorem (Erdds and Gyarfas, 1997)

p—2
For some ¢ depending on p and q, f(n,p,q) < cn(8)-o+

@ Their proof is nonconstructive (uses probabilistic method)
@ They also showed that f(n, p, p) has to be polynomial in n

@ However, Conlon et al. showed that f(n,p,p— 1) is
subpolynomial in n

@ Their coloring is a generalization of Mubayi’s optimal
coloring for f(n,4,3)
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Our (4,3)-Coloring

Partition {1,2,--- ,n} into t = [2V!°9™] equally sized sets and
label them 1 — t. Do this for k = [2/log n]| partitions so that
every edge crosses between two sets in some partition.
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Our (4,3)-Coloring

Partition {1,2,--- ,n} into t = [2V!°9™] equally sized sets and
label them 1 — t. Do this for k = [2/log n]| partitions so that
every edge crosses between two sets in some partition.

@ For e = {a, b}, let ci(e) be the smallest *
i for which e is crossing in the ith /
partition. In the picture, ¢{(e) = 2.
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Our (4,3)-Coloring

Partition {1,2,--- ,n} into t = [2V!°9™] equally sized sets and
label them 1 — t. Do this for k = [2/log n]| partitions so that
every edge crosses between two sets in some partition.

i for which e is crossing in the ith
partition. In the picture, ¢i(e) = 2.
@ Let cx(e) be the pair of labels of the o o
sets e crosses between in the partition
numbered cy(e).

@ Let c3(e) be a binary string of length k .
where the ith entry is 1 iff e is crossing
in the ith partition. Here c3(e) = (0, 1).

@ The triple (cq(e), c2(e), c3(e)) is the
color of e. ° °

@ For e = {a, b}, let c¢y(e) be the smallest / *
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Our (4,3)-Coloring.

@ Why does this work?
@ No monochromatic triangles
@ This leaves only the following bad Kjs:
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Our (4,3)-Coloring.

@ Why does this work?
@ No monochromatic triangles
@ This leaves only the following bad Kjs:

@ In total we used 22k colors, which is 2°(v109) gince

k =[24/logn] and t = (2\/@1.
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Future work

@ Modify the above coloring by choosing a coloring on K;
and using this to determine c,(e).
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Future work

@ Modify the above coloring by choosing a coloring on K;
and using this to determine c,(e).

@ Work on the lower bound
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